Summary

Data Modeling

Model(Resampling Method) Error Rate Sensitivity Specificity AUC
KNN 10-Fold CV, k=1:10 0.1759 0.9568 0.2971 0.6269339
KNN 10-Fold CV, k=1:30 0.1961 0.9758 0.1213 0.5485514
KNN Hold-out CV, k=1:10 0.1759 0.9568 0.2971 0.6269339
KNN Hold-out CV, k=1:30 0.1987 0.0053 0.0335 0.5141020
KNN LOOCV 0.1717 0.9621 0.2971 0.6295682
KNN LOOCV (Tuned) 0.1995 0.9768 0.1004 0.5386181
Repeated CV 0.1776 0.9104 0.4728 0.6916177
Repeated CV (Tuned) 0.1120 0.9547 0.6234 0.7890601
Logistic Regression (caret 10-fold CV) 0.1902 0.9336 0.3180 0.6258030
Logistic Regression (caret tuned with stepAIC) 0.1919 0.9895 0.0879 0.5386644
Logistic Regression (MASS 10-fold CV) 0.1616 1.0000 0.0857 0.5438871
Logistic Regression (MASS Hold-out CV) 0.1894 0.9884 0.1046 0.5465057
LDA (caret 10-fold CV) 0.1919 0.9283 0.3305 0.6294448
LDA (MASS 10-fold CV) 0.1591 0.9969 0.1143 0.5488133
QDA (caret10-fold CV) 0.2559 0.7418 0.7531 0.7474858
QDA (MASS 10-fold CV) 0.1692 0.8934 0.5714 0.7324227

Further Modeling

Model Error Rate Sensitivity Specificity AUC
Naive Bayes 0.2466 0.7829 0.6360 0.7094563
CART 0.1827 0.9062 0.4644 0.6853261
Random Forest 0.0471 0.9789 0.8494 0.9141488
Bagging 0.0497 0.9694 0.8745 0.9219593
Boosting 0.1633 0.9389 0.4310 0.6849227
XGBoost 0.1338 0.9589 0.4979 0.7284060
SVM 0.1641 0.9726 0.2929 0.6327449
Neural Network 0.1818 0.9378 0.3431 0.6404628